Numerical Model of Streaming DEP for Stem Cell Sorting

نویسنده

  • Rucha Natu
چکیده

Neural stem cells are of special interest due to their potential in neurogenesis to treat spinal cord injuries and other nervous disorders. Flow cytometry, a common technique used for cell sorting, is limited due to the lack of antigens and labels that are specific enough to stem cells of interest. Dielectrophoresis (DEP) is a label-free separation technique that has been recently demonstrated for the enrichment of neural stem/progenitor cells. Here we use numerical simulation to investigate the use of streaming DEP for the continuous sorting of neural stem/progenitor cells. Streaming DEP refers to the focusing of cells into streams by equilibrating the dielectrophoresis and drag forces acting on them. The width of the stream should be maximized to increase throughput while the separation between streams must be widened to increase efficiency during retrieval. The aim is to understand how device geometry and experimental variables affect the throughput and efficiency of continuous sorting of SC27 stem cells, a neurogenic progenitor, from SC23 cells, an astrogenic progenitor. We define efficiency as the ratio between the number of SC27 cells over total number of cells retrieved in the streams, and throughput as the number of SC27 cells retrieved in the streams compared to their total number introduced to the device. The use of cylindrical electrodes as tall as the channel yields streams featuring >98% of SC27 cells and width up to 80 μm when using a flow rate of 10 μL/min and sample cell concentration up to 105 cells/mL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency discretization in dielectrophoretic assisted cell sorting arrays to isolate neural cells.

We present an automated dielectrophoretic assisted cell sorting (DACS) device for dielectric characterization and isolation of neural cells. Dielectrophoretic (DEP) principles are often used to develop cell sorting techniques. Here we report the first statistically significant neuronal sorting using DACS to enrich neurons from a heterogeneous population of mouse derived neural stem/progenitor c...

متن کامل

Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display...

متن کامل

Discrimination methodology of living-cells and microbeads using dielectrophoresis and fluid-induced shear force

Cell sorting is an important technology that is widely used for medical diagnosis in hospitals and cell engineering research. Among cell sorting technology, dielectrophoresis (DEP) is one of the most promising approaches for manipulating and separating biological particles because this phenomena requires no labeling procedure with a fluorescent dye or magnetic beads. In this study, we developed...

متن کامل

Characterization of human skeletal stem and bone cell populations using dielectrophoresis.

Dielectrophoresis (DEP) is a non-invasive cell analysis method that uses differences in electrical properties between particles and surrounding medium to determine a unique set of cellular properties that can be used as a basis for cell separation. Cell-based therapies using skeletal stem cells are currently one of the most promising areas for treating a variety of skeletal and muscular disorde...

متن کامل

Membrane biophysics define neuron and astrocyte progenitors in the neural lineage.

Neural stem and progenitor cells (NSPCs) are heterogeneous populations of self-renewing stem cells and more committed progenitors that differentiate into neurons, astrocytes, and oligodendrocytes. Accurately identifying and characterizing the different progenitor cells in this lineage has continued to be a challenge for the field. We found previously that populations of NSPCs with more neurogen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016